

Thermedia experience – From the vision to the industrial product

Emmanuel Guillon,

LCR, LafargeHolcim

July 5-6th, 2016

Thermedia experience – From the vision to the industrial product

Outline

The Genesis – Why an insulating concrete?

JULY 6TH 2016 © LafargeHolcim 2015 3

Once upon a time in 2005... New Key Functions project

LafargeHolcim E. GUILLON - Thermedia - Gilles Chanvillard Symposium

End 2005, the roadmap of energy-efficient concretes

The thermal issue of internally insulated buildings (the reference insulation practice of French buildings)

Thermal bridges are heat losses due to the discontinuity of insulation at structural junctions

- Thermal bridge coefficient: ψ in W/(m.K): heat power transmitted through a linear element due to a temperature difference
 - For example at wall/slab junction or at interior wall/peripheral wall junction
- According to ADEME thermal bridges account for 5-10% of heat losses of buildings
 - Now thermal regulations (RT 2005 then RT 2012 in France) impose to limit thermal bridges
- Close to thermal bridges lower surface temperature
 → condensation risk → mold growth risk

2006 – The target specifications defined

What are the other alternatives to treat thermal bridges?

External Insulation \rightarrow no more discontinuity of insulation

• But: expensive, 10 year guarantee, not easy in case of balconies, fire propagation, acoustics

E. GUILLON - Thermedia - Gilles Chanvillard Symposium

8

What are the other alternatives to treat thermal bridges?

Thermal breakers \rightarrow skilled additional operation

• Modify jobsite sequence, limited use in seismic areas

From 2009 to now – several generations of Thern

E. GUILLON - Thermedia - Gilles Chanvillard Symposium

JULY 6TH 2016

10

Thermedia: design of an insulating concrete

JULY 6TH 2016 © LafargeHolcim 2015 11

Technical Specifications of a Structural Insulating Concrete for loadbearing facades

Objective: keep same construction methodology and design

- Similar reinforced concrete design
 - → Compressive strength class = 25 MPa
- Allow to reduce significantly thermal bridges
 - → λ< 0.6 W/(m.K)

- The Thermedia wall system should comply all other performances required by an external wall
 - Fire resistance: 2 hours REI rating
 - Acoustical insulation: D_{naT} > 30 dB for external noise, > 53 or 58 dB between rooms
 - Thermal insulation: the whole building should be thermal regulationcompliant

Thermedia has to be seen not only as a concrete but also as a system

The concrete Thermedia is a compromise of two contradictory trends

Thermal conductivity decreases Strength decreases with density with density

Optimization of the thermal conductivity of a concrete

Concrete = aggregates + sand + cement paste + air

- Which best mix proportions can allow to meet all requirements?
 - → Homogenization methods in the service of thermal optimization of concretes

1cm

Multi-scale homogenization scheme

LafargeHolcim

Mori-Tanaka and Self-Consistent homogenization schemes

Multi-scale homogenization scheme

E. GUILLON - Thermedia - Gilles Chanvillard Symposium

LafargeHolcim

Comparison of modeling with experiments

Good correlation \rightarrow we can use model to define target mix proportions as function of possible lightweight aggregates

LafargeHolcim E. GUILLON - Thermedia - Gilles Chanvillard Symposium

From the insulating concrete to the structural insulating concrete

What differentiates Thermedia from a STD concrete?

Thermedia is a LC 25/28 concrete according to EN 206 but...

- From the concrete producer point of view...
 - A concrete with lightweight aggregates → another sourcing
 - A concrete with water-absorbing aggregates → robustness, quality management
 - Several mixes available as function of local cements, available aggregates,...

• From the structural designer point of view...

- A concrete with lower density than STD concrete
 - Design values of other material properties (Young modulus, shear strength, ...) are decreased → structural design slightly differs
- A lighter concrete so with higher drying shrinkage

One of Gilles's contribution against a recurrent misconception: "more shrinkage = more cracks"

Thermedia compared to a STD C25/30 concrete...

- Drying shrinkage is higher because of the use of lightweight aggregates
- But Thermedia has a lower Young modulus
 - ➔ in case of restraint, lower internal stresses
- And tensile strength is equivalent
 - ➔ cracking occurs only if stress > strength
- Using Cracking Index: same or lower cracking 'risk' induced by drying

But sometimes it does not prevent from cracks to appear... The importance of pilot tests and key learnings

After 3-4 days, regularly spaced cracks appearing on all lintels

Then Gilles asked to get a sample from the bottom side of the lintel...

And its intuition was confirmed: concrete segregation

Confirmation in lab of cracking origin and cause tree

E. GUILLON - Thermedia - Gilles Chanvillard Symposium

Reproduction of jobsite observations in LCR

The original concrete mix and a revised formulation, with the same placing methodology as for pilot test

Thermedia was one perfect example that concrete offers more than a compressive strength at 28 days

- A material that solves a building system issue
 - Thermal bridge treatment
- A material that educated LCR and Lafarge to structural design
 - Cracking risk, reinforced concrete design with lightweight concretes
- An experience that showed that lab-crete and real-crete can be different
 - Importance of understanding customer's needs.
 - Importance of testing on real conditions
- Scientific expertise in the service of accelerating innovation

LafargeHolcim