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• Highlight Gilles extensive and deep contribution to UHPC material
development up to his involvement on iconic projects

• Focus on the back analysis method to assess fiber contribution for the post
cracking tensile stress

• Key stages of UHPC history from the assessment of fire properties,
assessment of structural behavior through pilot projects (crack analysis),
shrinkage, etc. up to most recent advanced mix development

• Gilles’ footprint on iconic projects as Mucem, Jean Bouin, FLV

• Gilles’ human contribution, empowering everybody in the labs combining an
amazing teamwork experience with the search for excellence
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UHPC : Ultra High Performance Concrete

Enhancement of:
• homogeneity
• compactness
• microstructure
• micro-fibre compatibility
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Ductal ®
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Ductal ® = large range of UHPC

• Ductal® is a registered trademark owned by LafargeHolcim that 
covers all the range of UHPC products

• Ductal® mixes are patented material customized for specific needs

Performances

• Strong: up to 250 MPa in compressive strength and
50 MPa in flexural strength

• Lifetime of structures is higher than 150 years

• High durability properties

• Constant properties over time

Ordinary concrete Ductal ® with heat treatment

Ductal ® without heat treatment
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Genesis of UHPC
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Reinforced / Prestressed concrete: 
compliance of detailings (cover of rebars, 
spacing between rebars, bending radius of 
stirrups, …) leads to large and not optimized 
sections

Durability: ordinary concrete is sensible to 
aggressive agent ingress (carbonation, chloride 
attacks, freeze / thaw cycles) � reinforcement 
must be protected by the concrete

A solution: remove the 
rebars and develop a 

high durable and 
strong concrete
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Genesis of Ductal ®
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reinforced concrete beam
prestressed concrete beam

metallic beam
Ductal beam

1996: first extensive project in 
France (nuclear plant)

A total of 2,400 metallic girders 
were replaced by prestressed

girders in Ductal
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History of Ductal ®
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1994

First Bouygues  
patents « BPR »
(metallic fibres)

1997

First Ductal® 

patent 
(metallic fibres)

1998

New Ductal® 

patent 
(organic fibres)

2000

New Ductal® 

patent 
(fire resistant with 
PP fibres)

2004

Rhodia withdraws 
from the co-
ownership 

2005 - 2011

R&D projects focussed
on surface treatment

2008 - 2014

R&D projects focussed on 
100% Lafarge formulations

04/2014

Agreement 
with 
Bouygues 
on the use 
of jointly 
owned  
patents and 
Ductal® 

trademark

1995

Agreement Bouygues / 
Lafarge / Rhodia
(common development,
co-ownership)

The worldwide brand 
Ductal® is registered

2007

First 100% 
Lafarge patent 

UHPC by 
Lafarge
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Gilles is one of inventors for 
several Ductal patents
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Ductal ®: range of tailor-made
mixes
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Large range of 
applications 
by mastering
the rheology pouring
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Since ancient times, fibres have been 
used to reinforce brittle materials
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Exodus 5:6,
And Pharaoh commanded the same day the taskmasters of the people, and their 
officers, saying, we shall no more give the people straw to make brick, as heretofore: 
let them go and gather straw for themselves

Egyptians used straw to reinforce mud bricks, but there is evidence that asbestos fiber 
was used to reinforce clay posts about 5000 years ago.
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Early  19 th century, patent on steel fibers as reinforcement
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Several patents on fibre geometries
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Hooked ends fibre
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Fibres concrete
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• During the early 1960s in the United States, the first major
investigation was made to evaluate the potential of steel fibres
as reinforcement for concrete. Since then, a substantial amount
of research, development, experimentation, and industrial
application of steel fibre reinforced concrete has occurred.

• Use of glass fibres in concrete was first attempted in the USSR
in the late 1950s. Development of alkali-resistant glass fibres
containing zirconia has led to a considerable number of
commercialized products (for example architectural cladding
panels).

• Initial attempts at using synthetic fibres (nylon, polypropylene)
were not as successful as those using glass or steel fibres.
However, better understanding of the concepts behind fibre
reinforcement, new methods of fabrication, and new types of
organic fibres have led researchers to conclude that both
synthetic and natural fibres can successfully reinforce concrete.
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Fibres concrete: rheological considerations
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Whatever their type nor geometry, addition of fibres tends to degrade the
rheological behaviour of concrete.

Can we explain such impact with basic considerations ?

With fibres



© LafargeHolcim 2016

Fibres concrete: rheological considerations
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Tara Donovan 
Untitled (Pins)

As for aggregate, it is a 
question of fibre packing
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UHPC: mechanical consideration
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Cracking mechanisms of 
plain concrete: a certain 
potential of crack bridging
provided by aggregates

Cracking mechanisms of 
macro fibre concrete: no 
impact on tensile strength but 
large crack bridging potential
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UHPC: mechanical consideration
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Cracking mechanisms of micro fibre concrete: increase of apparent tensile
strength but small crack bridging potential
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UHPC: mechanical consideration
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Pure tension: two main categories, strain softening or hardening
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UHPC : Back analysis method
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From pure tension to flexural response:
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Back analysis method
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UHPC: Back analysis method for thin plates
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Thanks to Gilles, it is now common to characterize the tensile behaviour of fibre-
reinforced concrete by bending tests rather than by direct tensile tests. Then it is fairly
common today to apply reverse analysis to extract the tensile constitutive equation of
the material.
For the case of thin plates showing a bending hardening behaviour, Gilles developed
an explicit method (which does not need any numerical solver) allowing performing
reverse analysis into equivalent strain. This method starts with an experimental
moment-deflection relationship to get tensile stress-strain constitutive relationship. The
great advantage of this explicit approach is to be easy to program and it allows to
quickly manually adjust a constitutive material relationship on the experimental results
without any data pre-treatment.
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UHPC: Back analysis method for thin plates
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UHPC: Back analysis method for thin plates
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UHPC: Back analysis method for thin plates
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Iconic project: Mucem
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Mucem museum, France / Architect: Rudy Ricciotti
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Iconic project: Mucem
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Iconic project: Mucem
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• Straight column and Y column were tested

• Modeling and testing were consistent for straight 
column but unsafe for Y column (larger deflection than 
expected)

A testing device// failure 
mode: UHPC or massive 

head �
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Iconic project: Mucem
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Iconic project: Mucem
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Fibre orientation and distribution
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Iconic project: Mucem
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Fibre orientation and 
distribution
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Iconic project: Mucem
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Iconic project: Mucem
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Iconic project: Mucem

32Ductal®: from materials to structures, July 2016



© LafargeHolcim 2016

Iconic project: Mucem
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Iconic project: Mucem
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Iconic project: Jean-Bouin stadium
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Jean Bouin stadium, France / 
Architect: Rudy Ricciotti
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Iconic project: Jean-Bouin stadium 
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� panneau de toiture

� Façade

• Facade: triangle perforated panels, up to 8m x 2.4m

• Roof: waterproof panels + glass inclusions, same 
dimensions. Ribs devices used for drainage of water

• Isostatic panels support, specific designed hinges
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Iconic project: Jean-Bouin stadium
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Iconic project: Jean-Bouin stadium
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Ductility and safety factors…
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Iconic project: Jean-Bouin stadium
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Iconic project: Jean-Bouin stadium
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Iconic project: Jean-Bouin stadium
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Iconic project: Jean-Bouin stadium
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Iconic project: Jean-Bouin stadium
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Iconic project: Jean-Bouin stadium
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Iconic project: Jean-Bouin stadium
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Iconic project: Fondation Louis Vuitton
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Fondation Louis Vuitton (France) /
Architect: Frank Gehry
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Iconic project: Fondation Louis Vuitton
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• Total area: 9 326 m²

• Panels: 18,737

• Dimensions: 1.5m x 0.4m x 25mm
• 40% of the panels are flat
• 60% of the panels are curved and all different

Vacuum system for pouring 
the curved panels
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Iconic project: Fondation Louis Vuitton
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Iconic project: Fondation Louis Vuitton
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Iconic project: Fondation Louis Vuitton
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Iconic project: Fondation Louis Vuitton
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A deep tribute for Gilles Chanvillard

52Ductal®: from materials to structures, July 2016

Thank you Gilles!


