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The day Gilles put pressure on me… 

Poromechanics! 

Stress! 

Strain! 

Micromechanics! 

Modeling! 

Thermodynamics! 

Crystallization! 

Microstructure! 

Mechanics and Physics of Porous Solids (MPPS) - A tribute to Prof. Olivier Coussy 
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Delayed Ettringite Formation 

Initial state : 

ettringite 

precipitates in 

outer C-S-H  

20°C 

85°C 

expansive forces 

 Threshold stage : uniform paste 

expansion creates damage and gaps 

around aggregates 

 Final state : Ostwald ripening 

localizes ettringite in large 

space 

Monosulfate 

Ettringite 
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The day Gilles put pressure on me… 
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A framework and some questions  

Microstructure and shrinkage Transient strains induced 

by crystallization? 

(Espinosa-Scherer, 2008) 

Stresses induced by 

crystallization at equilibrium 
Delayed Ettringite Formation 



© 2016 LCR INTERNAL USE ONLY 

A few steps with Gilles  
Understanding (?) sulfate attack in concrete 
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A framework and some questions  

Microstructure and shrinkage Transient strains induced 

by crystallization? 

(Espinosa-Scherer, 2008) 

Stresses induced by 

crystallization at equilibrium 
Delayed Ettringite Formation 
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A framework and some questions  

Microstructure and shrinkage Transient strains induced 

by crystallization? 

(Espinosa-Scherer, 2008) 

Measuring stresses induced 

by crystallization 
Delayed Ettringite Formation 
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” 

“ 

Simulation de la Microstructure et des Retraits des mélanges Réactifs 
en cours de Solidification (SiMiRéSol) – 2000  

[…] 

As a conclusion, we believe this study is original in the sense 

that we are pioneers in such an approach, starting from the 

microstructure so as to predict a macroscopic behavior, such 

as shrinkage.  

Since the 30‟s, E. Freyssinet and after T. C. Powers had 

anticipated this modeling approach, and the main factors 

influencing shrinkage. But it is only with the development of 

the mechanics of partially saturated porous materials 

(generalizing the concept of effective pressure in soils, 

introduced by Biot in the 50‟s, and which was rigorously 

formalized only 10 years ago by O. Coussy) that such a 

modeling was made possible.  
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For a given relative humidity:  

• water is adsorbed on solid surface  

• and fills pores below a fixed pore size 

Water desorption isotherm,  
another way to express the porosity 

Gel pores 

Capillary 

pores Capillary 

pores 
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Water Isotherm: building on t-plot 

R. Badmann & co.,  

JCIS, 1981 

Thickness of the adsorbed water film (t-plot) on calcium silicate surface 

 C-S-H is the most abundant phase in hardened cement paste,  

specific surface ~ 350 m2/g 

 Water adsorption isotherm can be modelled based on t-plot 
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Water Isotherm: building on t-plot vs modified BET 

Y. Xi & co., ACBM, 1994 

Modified BET equation to describe the adsorption isotherm: 

 It is commonly assumed that at 30%, no capillary pores remain => t-plot point 

 Considering mass / volume balance of hydration, total porosity       can be estimated 

 Adsorption heat “C” being known, k and Vm can be estimated 

    .k.h1C1k.h1

.hC.k.V
W m




Hindered 

adsorption ? 

Capillary 

condensation? 
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From mix-design to water absorption isotherm 
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A framework and some questions  

Microstructure and shrinkage Transient strains induced 

by crystallization? 

(Espinosa-Scherer, 2008) 

Stresses induced by 

crystallization at equilibrium 
Delayed Ettringite Formation 
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Transient strains induced by crystallization? 

The deeper into the sample, the 

slower the ionic supply  closer 

to chemical equilibrium, no 

supersaturation possible? 

15 mmol/L  

Na2SO4 

distance from surface (µm) 

volume 

fractions 
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Local equilibrium? 
Sodium sulfate precipitation in stones 

(Espinosa-Scherer, 2008) 

s
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Modeling crystallization  
and diffusion between pores 
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Application to Cordova cream Limestone 

pore class 
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nucleation 

dissolution of the smallest 

crystals (Ostwald ripening) 

growth + 

diffusion 

Abdessamad Akkaoui, 2011 
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Impact of pore shape 

spherical pores 

pore class 

cylindrical pores 

pore class 

Abdessamad 

Akkaoui, 2011 
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Generalization of the model 

•Crystallization 

 

•Diffusion 

 

•Crystal pressure 

 

•Effective pressure 

 

•Strain 
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Abdusalam Aili, 2012 
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Parametric study 
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Description of one case 

Nucleus distribution 
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Description of one case 
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Parameters necessary to capture Espinosa – Scherer experiment 

Pore distribution 
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Application to Espinosa & Scherer experiment 

•Crystallization of mirabilite 

smD /10 210

Diffusion coefficient 

Experiment 

Model 

Abdusalam Aili, 2012 
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A framework and some questions  

Microstructure and shrinkage Transient strains induced 

by crystallization? 

(Espinosa-Scherer, 2008) 

Stresses induced by 

crystallization at equilibrium 
Delayed Ettringite Formation 
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The day Gilles put pressure on me… 

Poromechanics! 

Stress! 

Strain! 

Micromechanics! 

Modeling! 

Thermodynamics! 

Crystallization! 

Microstructure! 

Mechanics and Physics of Porous Solids (MPPS) - A tribute to Prof. Olivier Coussy 
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A possible scenario for DEF 

•Initial state : 

ettringite precipitates 

in outer C-S-H  

20°C 

85°C 

expansive forces 

 Threshold stage : uniform paste 

expansion creates damage and gaps 

around aggregates 

 Final state : Ostwald ripening 

localizes ettringite in large space 

Monosulfate 

Ettringite 
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Solid C-S-H 

Solid C-S-H 
 

liquid saturated porous volume AFm 
    

Porous volume of C-S-H AFm 

Total volume of C-S-H porous medium 

Total volume of porous medium 

Total porosity of porous medium 

A scenario for ettringite precipitation  

•AFm phase is considered as  a pore volume filled with reactive AFm crystals. 

•AFm crystals are considered inert from a mechanical point of view. 

pm

tV

Initial state, after hydration at high temperature 

After partial conversion of AFm to AFt 

AFm  AFt 

chemical 

shrinkage 
 AFt  

 AFm  AFt 

 replacement  Invading AFt 
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How could ettringite precipitation generate strains? 
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Elastic energy stored by the solid phase  

 Considering linear isotropic poroelasticity and isothermal and non-dissipative conditions, 

elastic energy is given by: 
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 bJ, NIJ are respectively the generalized Biot coefficients and the generalized poroelastic coupling 

modules. Assuming iso-deformation of porous media, we obtain: 

 Adopting a Mori-Tanaka homogenization scheme considering the porous material as formed of 

spherical voids embedded in a homogeneously strained solid matrix, bulk modulus K  is given 

by: 

Note that in this equation,  

AFm is  considered as porosity  

(non active mechanically) 

Coussy, Mechanics and Physics of porous solids, Wiley, New York. (2010) 

Coussy, JMPS (2006), Château & Dormieux, Int. JNAMG (2002)  
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•If the material is unloaded at the macroscopic scale so that  = sij = 0,  

the elastic energy stored  becomes: 
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 where  

 PJ = pJ–p0  with p0 the atmospheric pressure  

 gas pressure remains at atmospheric pressure 

Elastic energy stored by the solid phase  

•Considering cement paste as a brittle material, it can be 

stated that it cannot store elastic energy beyond a critical 

threshold. 

•In the case of a mean isotropic tensile stress  (sij=0) and 

without internal pressures (pJ-p0=0), the elastic energy is 

given by: 
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Hypotheses for material behaviour  

   2

0(1 ) . .C C L Lb b b S p S p         

 It is interesting to remark that capillary pressure and crystallization pressure play 

obviously the same role, weighed by saturation degrees.  

 However, signs of these pressure terms are opposite (liquid phase will be under 

tension while crystal phase will be in compression). Consequently, they act in 

opposite ways from viewpoint of energy. 

 Equalling stored elastic energy from internal pressures and from isotropic tensile 

stress, the macroscopic tensile stress can be expressed as a function of internal 

pressures and saturation degrees: 
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Integrating over the whole pore distribution 
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‘intrusion critical humidity’? 
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Tensile stress resulting from DEF could lead to damage 
even for low value of conversion of AFm to AFt 

•The first order factors are 

•intrusion radius  

•C3A content 
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Back to Gilles… 

• Gilles could swallow a huge amount of papers, on which he 

built a personal framework for understanding concrete 

 

• He had a passion for the work of his predecessors, but was 

also up to date for very recent research  

 

• Gilles was at ease with complex concepts and equations, able 

to develop models 

 

•  But he was always careful about how this could help 

practically, on the field 
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“ Hi Rémi, it‟s Gilles, I‟ve stopped on a parking lot, thinking 

about our great discussion this afternoon, I just hope you don‟t 

„Bolomey‟ too much!  

So I was thinking, all that we say about models and tools, I 

believe it‟s a matter of pedagogy. I wonder if we shouldn‟t 

define some „10 golden rules  level 0‟, „10 golden rules level 1‟ 

etc.  

I mean, giving people the capacity to act by themselves rather 

than giving them models. I like the gel-space ratio approach, 

it‟s a nice model, but people don‟t understand what‟s behind. 

Shouldn‟t we explain and tell people „do it by yourself now‟, 

„you‟ve understood that…‟.  

Well, that was my thoughts while driving. So, have a good 

night, and see you tomorrow, ciao! 

” 
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        Merci !     


