Gilles'memory

Steel Fibre Reinforced Concretes : from Meso to Macro-Scale

Pierre Rossi

Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux

Steel Fibre Reinforced Concretes : from Meso to Macro-Scale

Why to use steel fibres ?

- To improve the tensile behaviour of concretes: Strength and Ductility
 Only possible in very special Ultra-High Performances Concretes
- •To replace a partly or totally the rebars in concrete structures
 - **For all concrete structures**

Meso-Scale

Behaviour of one or several fibres embedded in a concrete matrix

Optimisation of the fibre geometry and dimensions in function of the compactness of the matrix

PHD thesis of Gilles, 9 Janvier 1992, Université de Sherbrooke, Canada

a) positionnement des fibres

a) vue d'un demi échantillon démoulé

b) coulage de la deuxième moitié de l'échantillon

PHD thesis of Gilles

PHD thesis of Gilles

What is the fibres acting through a macrocrack ?

✓ Friction between the fibres and the matrix: importance of the length and the diameter of the fibre

✓ **Plastification** of the fibres: importance of the geometry (existence of hooks at the fibres ends, undulations...)

General rules of optimization of SFRC

More compact the matrix is, **shorter** and **thiner** the fibres have to be

The mechanical behaviour of the fibre/matrix interface depends on the percentage of fibres

The mechanical behaviour of the composite is strongly dependent of the preferential orientations of fibres

Macro-Scale

Meso-Scale

Steel Fibre Reinforced Concretes : from Meso to Macro-Scale

Macro-Scale

Determination of the post-cracking behaviour in tension of SFRC

Direct approach: uniaxial tensile test on notched specimens

Macro-Scale

Post-cracking behaviour in tension of SFRC

Design of SFRC structures based on the cracked section equilibrum approach

The first french recommandations for designing SFRC structures (AFREM, 1998)

Gilles Chanvillard, Pascal Casanova, Pierre Rossi

<u>After 1998</u>

- French National Project BEFIM (1995-2001) on the Industrial Development of SFRCs
 - Creation of the International Conference BEFIB on Fibre-Reinforced Concretes (2000, Lyon, Co-Chairman: Gilles Chanvillard and Pierre Rossi)

The next one (5th edition), in September 2016, in Vancouver (Canada)

- Sustainable Development: necessity to optimize the quantity of concrete used for a given constructive function (conception of hyperstatic structures)
 - Durability of the structures: better knowledge and mastering of the cracking of concrete structures in service conditions

Traditional design approaches are not enough efficient

Development of finite elements models

Specifications for an efficient FE Model for SFRC Structures

- Concrete (the matrix) is an heterogeneous material : random spatial distribution of the tensile strength
 - Concrete (the matrix) rupture in tension is a scale effect process: the average tensile strength and the standard deviation increases when the volume of material stressed decreases
- Post-cracking behaviour of the SFRC (the composite) is less scattered when the volume of material stressed in tension increases

Discret probabilistic cracking model I. Cracking of concrete

Steel Fibre Reinforced Concretes : from Meso to Macro-Scale

Discret probabilistic cracking model II. Post-Cracking of SFRC

Discret probabilistic cracking model Example of application - I

h = 300 mm

Steel Fibre Reinforced Concretes : from Meso to Macro-Scale

Discret probabilistic cracking model Example of application - I

Discret probabilistic cracking model Example of application - I

Discret probabilistic cracking model Example of application - II

E_{ground}= 10 MPa

E_{ground}= 40 MPa

Gilles

My Friend

Thank you for accompanying me during a large part of my professional life It was a pleasure and an honor to meet you