Crystallization of salts in a porous medium

A tribute to Gilles Chanvillard

George W. Scherer, Princeton University

July 5, 2016

Salts in a porous medium

- What is the problem?
- Gilles' approach to the equilibrium state
- Non equilibrium considerations
- Experimental study of growth in pore networks

Mirabilite in Limestone

Indiana limestone
 pores contain
 thenardite (Na₂SO₄)

 Precipitation of mirabilite (Na₂SO₄•10H₂O) destroys stone

Mirabilite in Limestone

Indiana limestone
 pores contain
 thenardite (Na₂SO₄)

 Precipitation of mirabilite (Na₂SO₄•10H₂O) destroys stone

Stress from Mirabilite

Solubility (moles / kg)

- Dry salt dissolves until solution is saturated with respect to thenardite
- That solution is highly supersaturated with respect to mirabilite

Driving Force for Growth: Supersaturation

✤ Dissolution of hydrated salt $Na_2SO_4 \cdot 10H_2O \rightleftharpoons 2Na^+ + SO_4^{2-} + 10H_2O$ Solubility product: $Q = [Na^+]^2 [SO_4^{2-}][H_2O]^{10}$ Equilibrium constant: Q = K[T]

✤ Pressure needed to suppress growth of a macroscopic crystal $p = \frac{RT}{V_M} \ln \left[\frac{Q}{K[T]} \right] \approx \frac{R_g T}{V_M} \ln \left[\left(\frac{c}{c_s} \right)^3 \right]$

Concentration versus Saturation

 As degree of saturation with crystals increases, mole fraction of solute decreases

Saturation versus Pore radius

✤ Crystals progressively invade smaller pores, reaching full saturation as $r_p \rightarrow 0$

Crystallization pressure vs Radius

 As smaller pores are invaded, the pressure applied to the pore walls, *P_A*, increases

Chanvillard Diagram

Equilibrium state corresponds to osculating rectangle

First cycle from arbitrary starting point

Second cycle

Third cycle

* Fourth cycle \rightarrow approaching equilibrium

Inaccessible pores

Initial concentration limits size of pores that salt can enter

Crystal saturation

Equilibrium box bounds salt-filled pores

Effect of concentration

Decreasing x decreases pressure on pore walls

Effect of concentration

Raising x increases pressure on pore walls

Coarsening

• Diffusion of salt out of the body reduces P_A

External source of salt

Entry of salt, evaporation, or cooling raises x and P_A

Wetting / Drying Cycles

Rewetting with salt-rich solution raises x and P_A

Limitations of equilibrium analysis

- Pores in stone are usually too large for curvature to affect solubility significantly
 - All pores fill simultaneously
 - Propagation from large into small pores leads to diffusion control, so no pressure

Solubility versus Pore size

 Freundlich equation relates solubility product, K, to crystal size

Indiana Limestone

- Bimodal pore size distribution
 - Peaks near0.3 and 30 μm
 - Few pores
 smaller than
 0.1 μm

Kinetic considerations

- Interface- versus Diffusion-controlled growth
- Frequency of nucleation
- Transport in the film
- Growth through a network of pores

Interface Control

- Rate of growth is determined by the kinetics of attachment of atoms to the interface
 - Not all sites are equally likely to accommodate attachment
 - Driving force for growth is supersaturation, Q/K 1

Interface attachment kinetics

• Growth rate, *G*, depends on mobility, η , driving force, ΔG_f and accommodation probability (interface site factor, *f*)

$$G = \frac{f k T}{2 \pi \lambda^2 \eta} \left(1 - \exp\left[-\frac{\Delta G_f}{kT}\right] \right)$$

• Precipitation: $\Delta G_f = kT \ln\left(\frac{Q}{K}\right) \equiv kT \ln(\beta)$

$$G = \frac{f kT}{2\pi \lambda^2 \eta} \left(\frac{\beta - 1}{\beta}\right)$$

Diffusion control

- If the supply of atoms is small, the rate of arrival of atoms may be slower than the rate of attachment
 - Concentration at interface reaches equilibrium solubility
 - Since no supersaturation exists, no pressure can be exerted

Growth in pores

Pores in Indiana limestone

Model Networks

Polyhedral grains with cylindrical pores along edges

For typical stone with 15% porosity, 0.5 m²/g surface area, node spacing is 4-6 times the pore diameter

Crystallization Pressure

 Crystallization pressure is possible only if the crystal is in contact with a supersaturated solution

$$p_C \approx \frac{R_g T}{V_M} \ln \left[\left(\frac{c}{c_s} \right)^v \right]$$

- Under diffusion control, the interface concentration is c_s, so it cannot grow against resistance
- Crystallization pressure is present *only* if the crystal is growing under interface control

Pore - Filling

Volume fraction of salt is insufficient to fill the pores

Pore - Filling

Volume fraction of salt is insufficient to fill the pores

Pore - Filling

Volume fraction of salt is insufficient to fill the pores

To generate pressure, must diffuse salt from adjoining pores while maintaining supersaturation

Generating Pressure

- Expect heterogeneous nucleation on pore walls
 - No pressure generated unless crystal touches the opposite wall
- When a spherical crystal makes contact (radius = diameter of pore) its volume is

$$V_{sphere} = 8\left(\frac{2\pi}{3} - \frac{8}{9}\right)r_{pore}^{3}$$
$$= \pi r_{pore}^{2} \ell v_{frac}$$

so solute comes from pore length

Generating Pressure

- Expect heterogeneous nucleation on pore walls
 - No pressure generated unless crystal touches the opposite wall
- When a spherical crystal makes contact (radius = diameter of pore) its volume is

$$V_{sphere} = 8\left(\frac{2\pi}{3} - \frac{8}{9}\right)r_{pore}^{3}$$
$$= \pi r_{pore}^{2} \ell v_{frac}$$

so solute comes from pore length

Diffusion Control?

- * Solute must come from distance $\ell / 2 \approx 1.5 r_{pore} / v_{frac}$
- * Time for crystal to grow into contact is $t = 2r_{pore} / G$
- * Distance homogenized by diffusion in this time is $x \approx \sqrt{Dt} \approx \sqrt{2r_{pore}D/G}$

* Is $x > \ell/2$?

- * For sodium sulfate heptahydrate, $G \sim 1-6 \,\mu\text{m/s}$, $D \approx 0.65-2 \, \text{x} \, 10^{-9} \, \text{m}^2/\text{s}$, so if pore radius is $r_{pore} \approx 2 \,\mu\text{m}$, $x \approx 20-90 \,\mu\text{m} \approx 10-45 \, r_{pore} > \ell/2$ for $v_{\text{frac}} > 0.03-0.15$
 - Stress from hepta exerted w/o diffusion control

Nucleation on Walls

- Expect heterogeneous nucleation on pore walls
 - Few sites have favorable contact angle
- If number of nuclei ≥ 1 between nodes, the amount of solute is not sufficient to allow the crystal to grow into contact with the opposite side of the pore
 - Nucleation must be rare to generate crystallization pressure

Nucleation on Walls

- Expect heterogeneous nucleation on pore walls
 - Few sites have favorable contact angle
- If number of nuclei ≥ 1 between nodes, the amount of solute is not sufficient to allow the crystal to grow into contact with the opposite side of the pore
 - Nucleation must be rare to generate crystallization pressure

Pore Network

- Network consists of cylindrical pores and nodes (junctions)
 - What happens when a crystal reaches a node?
 - Branch into all, some, or none of the intersecting pores?

Branching at Nodes

Can crystals branch freely at nodes, or are they trapped?

In this case, a single crystal can transform all the pore volume

In this case, diffusion to the trapped crystal generates crystallization pressure

Growth in a Network

- Nucleation must be rare to allow crystals to fill pores
- Diffusion must be fast compared to growth to allow interface concentration to be high ($\beta > 1$)
- If nuclei are not too far apart, neighborhood (red zone) has uniform concentration

Growth in a Network

- Nucleation must be rare to allow crystals to fill pores
- * Diffusion must be fast compared to growth to allow interface concentration to be high ($\beta > 1$)
- If nuclei are not too far apart, neighborhood (red zone) has uniform concentration

Growth & Branching

- * If the crystal branches into all pores at junctions, a region with radius *r* transforms, but the growth distance is $\ell = r \tau$, where τ is the tortuosity of the pore network
- Stress determined by composition of film between crystal and wall

If diffusion in film is very slow,
 high pressure can be sustained on the pore wall

- Film of solution is trapped between crystal and pore wall
- Whether
 composition of film
 equilibrates with
 pore solution
 depends on
 diffusivity in the film

- Film of solution is trapped between crystal and pore wall
- Whether
 composition of film
 equilibrates with
 pore solution
 depends on
 diffusivity in the film

- Film of solution is trapped between crystal and pore wall
- Whether
 composition of film
 equilibrates with
 pore solution
 depends on
 diffusivity in the film

- Film of solution is trapped between crystal and pore wall
- Whether
 composition of film
 equilibrates with
 pore solution
 depends on
 diffusivity in the film

- Film of solution is trapped between crystal and pore wall
- Whether
 composition of film
 equilibrates with
 pore solution
 depends on
 diffusivity in the film

- Film of solution is trapped between crystal and pore wall
- Whether
 composition of film
 equilibrates with
 pore solution
 depends on
 diffusivity in the film

- Film of solution is trapped between crystal and pore wall
- Whether
 composition of film
 equilibrates with
 pore solution
 depends on
 diffusivity in the film

- Film of solution is trapped between crystal and pore wall
- Whether
 composition of film
 equilibrates with
 pore solution
 depends on
 diffusivity in the film

- Film of solution is trapped between crystal and pore wall
- Whether
 composition of film
 equilibrates with
 pore solution
 depends on
 diffusivity in the film

Fast diffusion in Film

- Suppose that growth is interface controlled
 - Concentration in pore liquid decreases as crystal grows, but interface concentration equals average composition, and *film composition is in equilibrium with pore liquid*

Fast diffusion in Film

Suppose that growth is interface controlled

 Concentration in pore liquid decreases as crystal grows, but interface concentration equals average composition, and *film composition is in equilibrium with pore liquid*

Slow diffusion in Film

- Suppose that growth is interface controlled
 - Concentration in pore liquid decreases as crystal grows, and interface concentration equals average composition, but *film concentration does not equilibrate with pore*

Slow diffusion in Film

- Suppose that growth is interface controlled
 - Concentration in pore liquid decreases as crystal grows, and interface concentration equals average composition, but *film concentration does not equilibrate with pore*

Comparison to Data

- NMR measurements of average solution concentration during growth of hepta in pores of stone
- ◆ Plot of normalized volume fraction versus normalized time indicates
 $R_0 \approx 1$ cm
- If a single crystal grows that far, it must enter diffusion control

Comparison to Data

DSC data for hepta in limestone

- Fit implies R₀ ≈ 0.3 mm (similar to size of DSC sample)
- Implies growth of few crystals with high tortuosity or difficulty branching at nodes in network

Comparison to Data

- DSC data for mirabilite in limestone (symbols) agree well with theory
- Duration of transition
 longer than time for
 one crystal to grow
 across the sample
- Implies growth of one crystal with high tortuosity or difficulty branching at nodes in network

Branching at Nodes

Can crystals branch freely at nodes, or are they trapped?

In this case, a single crystal can transform all the pore volume

In this case, diffusion to the trapped crystal generates crystallization pressure

Test of Growth in Channels

- Channels 5 µm wide
 & deep etched into Si,
 covered with glass
- Channels filled with solution (3 molal Na₂SO₄)
- Cooled to induce supersaturation

Channel structure

 Triangular pattern allows growth in straight line, but hexagonal pattern requires turn at every junction

Growth in Channels

3 molal Sodium sulfate

Branching

Crystal enters

Branching

Crystal passes junction, no branching

Branching

Branch occurs

Conclusions

- Existence of crystallization pressure implies growth controlled by interface kinetics, not diffusion
 - If branching occurred freely, pores would fill quickly
- Slow transformations observed experimentally imply blocking at nodes in pore network
 - Blocked crystals probably grow intermittently at high supersaturation
- Images show delayed branching of sodium sulfate in lithographic channels
 - Need more control over nucleation, better images, numerical simulation of diffusion and growth kinetics

Acknowledgments

- Gilles Chanvillard
- Lafarge, for its support of Gilles at Princeton (2004)
- Dr Saurabh Vyawahare (pattern fabrication), John Bestoso (pattern design), Prof. Jim Sturm

PDMS Channels

- Pattern originally made in PDMS
- Channels distorted
 by crystallization
 pressure
- Therefore, created
 new pattern in silicon

