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Salts in a porous medium

✤ What is the problem?

✤ Gilles’ approach to the equilibrium state

✤ Non equilibrium considerations

✤ Experimental study of growth in pore networks
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Mirabilite in Limestone

✤ Indiana limestone 
pores contain 
thenardite (Na2SO4) 

✤ Precipitation of 
mirabilite 
(Na2SO4•10H2O) 
destroys stone
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Stress from Mirabilite

✤ Dry salt dissolves 
until solution is 
saturated with  
respect to  
thenardite

✤ That solution is highly 
supersaturated with 
respect to mirabilite
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Driving Force for Growth: 
Supersaturation

✤ Dissolution of hydrated salt 
 
 
Solubility product: 
 
Equilibrium constant:  

✤ Pressure needed to suppress growth of a 
macroscopic crystal
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Concentration versus Saturation

✤ As degree of saturation with crystals increases,  
mole fraction of solute decreases
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Saturation versus Pore radius

✤ Crystals progressively invade smaller pores, reaching 
full saturation as rp → 0
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Crystallization pressure vs Radius

✤ As smaller pores are invaded, the pressure applied to 
the pore walls, PA, increases
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Chanvillard Diagram

✤ Equilibrium state corresponds to osculating rectangle
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Approaching equilibrium

✤ First cycle from arbitrary starting point
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Approaching equilibrium

✤ Second cycle
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Approaching equilibrium

✤ Third cycle

12

β x( )

β

rp β( )



Approaching equilibrium

✤ Fourth cycle → approaching equilibrium
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Inaccessible pores

✤ Initial concentration limits size of pores that salt can enter
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Crystal saturation

✤ Equilibrium box bounds salt-filled pores
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Effect of concentration

✤ Decreasing x decreases pressure on pore walls
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Effect of concentration

✤ Raising x increases pressure on pore walls
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Coarsening

✤ Diffusion of salt out of the body reduces PA
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External source of salt

✤ Entry of salt, evaporation, or cooling raises x and PA
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Wetting / Drying Cycles

✤ Rewetting with salt-rich solution raises x and PA
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Limitations of equilibrium analysis

✤ Pores in stone are usually too large for curvature to 
affect solubility significantly

✤ All pores fill simultaneously

✤ Propagation from large into small pores leads to 
diffusion control, so no pressure
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Solubility versus Pore size

✤ Freundlich equation relates solubility product, K, to 
crystal size
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Indiana Limestone

✤ Bimodal pore size 
distribution

✤ Peaks near  
0.3 and 30 µm

✤ Few pores 
smaller than  
0.1 µm
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Kinetic considerations

✤ Interface- versus Diffusion-controlled growth

✤ Frequency of nucleation

✤ Transport in the film

✤ Growth through a network of pores
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Interface Control

✤ Rate of growth is determined by the kinetics of attachment of atoms to the 
interface

✤ Not all sites are equally likely to accommodate attachment

✤ Driving force for growth is supersaturation, Q/K - 1
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Crystal Growth

✤ Interface attachment kinetics

✤ Growth rate, G, depends on mobility, η, driving force, ΔGf 
and accommodation probability (interface site factor, f) 
 
 

✤ Precipitation: 
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Diffusion control

✤ If the supply of atoms is small, the rate of arrival of atoms 
may be slower than the rate of attachment

✤ Concentration at interface reaches equilibrium solubility

✤ Since no supersaturation exists, no pressure can be 
exerted
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Growth in pores

✤ Pores in Indiana limestone

28



Model Networks

✤ Polyhedral grains with cylindrical pores along edges

✤ For typical stone with 15% porosity, 0.5 m2/g surface 
area, node spacing is 4-6 times the pore diameter
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Crystallization  Pressure

✤ Crystallization pressure is possible only if the crystal 
is in contact with a supersaturated solution 
 

✤ Under diffusion control, the interface concentration 
is cs , so it cannot grow against resistance

✤ Crystallization pressure is present only if the crystal 
is growing under interface control
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Pore - Filling

✤ Volume fraction of salt is insufficient to fill the pores
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Pore - Filling

✤ Volume fraction of salt is insufficient to fill the pores
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Pore - Filling

✤ Volume fraction of salt is insufficient to fill the pores
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To generate pressure, must diffuse salt from adjoining 
pores while maintaining supersaturation



Generating Pressure
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✤ Expect heterogeneous nucleation on pore walls

✤ No pressure generated unless crystal 
touches the opposite wall

✤ When a spherical crystal makes  
contact (radius = diameter of pore) 
its volume is  
 
 
 
 
so solute comes from pore length
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Diffusion  Control?

✤ Solute must come from distance 

✤ Time for crystal to grow into contact is 

✤ Distance homogenized by diffusion in this time is  

✤ Is x > ℓ/2 ?

✤ For sodium sulfate heptahydrate, G ~ 1-6 µm/s,  
D ≈ 0.65-2 x 10-9 m2/s, so if pore radius is rpore ≈ 2 µm, 
x ≈ 20-90 µm ≈ 10-45 rpore > ℓ/2 for νfrac > 0.03-0.15
✤ Stress from hepta exerted w/o diffusion control

 ℓ / 2≈1.5 rpore / vfrac

t = 2 rpore /G

x ≈ Dt ≈ 2rporeD /G
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Nucleation on Walls

✤ Expect heterogeneous nucleation on pore walls

✤ Few sites have favorable contact angle 

✤ If number of nuclei ≥ 1 between nodes, 
the amount of solute is not sufficient 
to allow the crystal to grow into 
contact with the opposite side of 
the pore

✤ Nucleation must be rare to  
generate crystallization pressure
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Pore Network

✤ Network consists of cylindrical pores and nodes 
(junctions)

✤ What happens when a crystal reaches a node?

✤ Branch into all, some,  
or none of the  
intersecting pores?
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Branching  at  Nodes

✤ Can crystals branch freely at nodes, or are they trapped?
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In this case, a single 
crystal can transform all 

the pore volume

In this case, diffusion to the 
trapped crystal generates 
crystallization pressure



Growth in a Network

✤ Nucleation must be rare to allow 
crystals to fill pores

✤ Diffusion must be fast compared 
to growth to allow interface 
concentration to be high (β > 1)

✤ If nuclei are not too far apart, 
neighborhood (red zone) has  
uniform concentration
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Growth & Branching

✤ If the crystal branches into all pores at junctions, a region with 
radius r transforms, but the growth distance is  ℓ= r τ, 
where τ is the tortuosity of the  
pore network

✤ Stress determined by  
composition of film between 
crystal and wall  

✤ If diffusion in film is very slow, 
high pressure can be sustained on the pore wall
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Trapping of Film

✤ Film of solution is 
trapped between 
crystal and pore wall

✤ Whether 
composition of film 
equilibrates with 
pore  solution 
depends on 
diffusivity in the film
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Fast diffusion in Film

✤ Suppose that growth is interface controlled

✤ Concentration in pore liquid decreases as crystal grows, 
but interface concentration equals average composition, 
and film composition is in equilibrium with pore liquid

Crystal Crystal

40



Fast diffusion in Film

✤ Suppose that growth is interface controlled

✤ Concentration in pore liquid decreases as crystal grows, 
but interface concentration equals average composition, 
and film composition is in equilibrium with pore liquid

✤ Solid curve is  
crystallization pressure

✤ Dashed curve is 
fraction of pore  
filling with crystals

✤ RgT/VM ≈ 13 MPa
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Slow diffusion in Film

✤ Suppose that growth is interface controlled

✤ Concentration in pore liquid decreases as crystal grows, 
and interface concentration equals average composition, 
but film concentration does not equilibrate with pore
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Comparison to Data

✤ NMR measurements of average solution concentration during 
growth of hepta in pores of stone

✤ Plot of normalized 
volume fraction  
versus normalized 
time indicates 
RO ≈ 1 cm

✤ If a single crystal 
grows that far,  
it must enter 
diffusion control T. Saidov & L. Pel 44



Comparison to Data

✤ DSC data for hepta in limestone

✤ Fit implies R0 ≈ 0.3 mm 
(similar to size of 
DSC sample)

✤ Implies growth of  
few crystals with 
high tortuosity or 
difficulty branching 
at nodes in network
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Comparison to Data

✤ DSC data for mirabilite in limestone (symbols) agree well with 
theory

✤ Duration of transition 
longer than time for 
one crystal to grow 
across the sample

✤ Implies growth of  
one crystal with 
high tortuosity or 
difficulty branching 
at nodes in network
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Branching  at  Nodes

✤ Can crystals branch freely at nodes, or are they trapped?
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In this case, a single 
crystal can transform all 

the pore volume

In this case, diffusion to the 
trapped crystal generates 
crystallization pressure



Test of Growth in Channels

✤ Channels 5 µm wide 
& deep etched into Si, 
covered with glass

✤ Channels filled with 
solution (3 molal 
Na2SO4)

✤ Cooled to induce 
supersaturation 
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Channel structure

✤ Triangular pattern allows growth in straight line, but 
hexagonal pattern requires turn at every junction
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Growth in Channels

✤ 3 molal Sodium sulfate
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Branching

✤ Crystal enters
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Branching
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✤ Crystal passes junction, no branching



Branching
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✤ Branch occurs



Conclusions

✤ Existence of crystallization pressure implies growth controlled by 
interface kinetics, not diffusion
✤ If branching occurred freely, pores would fill quickly

✤ Slow transformations observed experimentally imply blocking at 
nodes in pore network
✤ Blocked crystals probably grow intermittently at high 

supersaturation
✤ Images show delayed branching of sodium sulfate in lithographic 

channels
✤ Need more control over nucleation, better images, numerical 

simulation of diffusion and growth kinetics
52



Acknowledgments

✤ Gilles Chanvillard

✤ Lafarge, for its support of Gilles at Princeton (2004)

✤ Dr Saurabh Vyawahare 
(pattern fabrication), 
John Bestoso 
(pattern design), 
Prof. Jim Sturm

53



54



PDMS Channels

✤ Pattern originally 
made in PDMS

✤ Channels distorted 
by crystallization 
pressure

✤ Therefore, created 
new pattern in silicon
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