Indentation, plastic shrinkage cracking, sulfate attacks, freeze-thaw behavior: Various topics on which I interacted with Gilles

M. Vandamme

Laboratoire Navier (ENPC, IFSTTAR, CNRS), École des Ponts ParisTech

Outline

- <u>C-S-H at submicrometer scale</u>
- Plastic shrinkage cracking
- Sulfate attacks
- Resistance to freeze-thaw cycling

with: F.-J. Ulm (MIT), J. Chen (LCR), L. Sorelli (LCR), & Gilles

Approach

© Le pont viaduc de Millau - Aveyron - France

M. Vandamme

Concrete multiscale structure

(*) Kosmatka et al., *Design and control of concrete mixtures*, 2002. (**) Miller et al., *CCC*, 2008. (***) Nonat A., *CCR*, 2004.

Concrete nanoscale to structures

July 5, 2016 4/36

Indentation testing

M. Vandamme

Concrete nanoscale to structures

July 5, 2016

5/36

Indentation testing

Indentation modulus

$$M = \frac{\sqrt{\pi}}{2} \frac{S}{\sqrt{A_c}} = \frac{E}{1 - v^2}$$

Indentation of heterogeneous material

Heterogeneous response

M. Vandamme

Deconvolution process

10 µm

- We identified 4 phases:
 - Clinker
 - 3 C-S-H phases:
 - Low-Density (LD)
 - High-Density (HD)
 - Ultra-High-Density (UHD)

My only paper with Gilles

J. Am. Ceram. Soc., 93 [5] 1484–1493 (2010) DOI: 10.1111/j.1551-2916.2009.03599.x © 2010 Lafarge Centre de Recherche Journal compilation © 2010 The American Ceramic Society

A Coupled Nanoindentation/SEM-EDS Study on Low Water/Cement Ratio Portland Cement Paste: Evidence for C–S–H/Ca(OH)₂ Nanocomposites

Jeffrey J. Chen,^{†,‡} Luca Sorelli,^{‡,¶} Matthieu Vandamme,^{§,∥} Franz-Josef Ulm,[§] and Gilles Chanvillard[‡]

[‡]Lafarge Centre de Recherche, 38291 Saint Quentin Fallavier, France [§]MIT, Department of Civil and Environmental Engineering, Cambridge, Massachusetts 02139

Journa

What "Ultra-High-Density" C-S-H is

Ultra-High Density C-S-H was in fact: High-Density C-S-H + portlandite (CH)

M. Vandamme

Concrete nanoscale to structures

July 5, 2016 10/36

Multi-technique characterization

• Coupling indentation with chemical analysis

Concrete nanoscale to structures

July 5, 2016 11/36

Outline

- C-S-H at submicrometer scale
- Plastic shrinkage cracking
- Sulfate attacks
- Resistance to freeze-thaw cycling

with: W. Wang (Navier), F. Bégaud (LCR), A. Delaplace (LCR), & Gilles

Plastic shrinkage cracking

[Slowik et al., CCC, 2009]

[http://designshack.net]

M. Vandamme

Concrete nanoscale to structures

July 5, 2016 13/36

Dyring-induced cracking

Oedometer testing of early-age mortar

M. Vandamme

Drying & humidification of mortar slab

July 5, 2016

Inclined board test with filler

Role of air entry pressure

- Air entry pressure ~ most critical capillary pressure from mechanical point of view
- Air entry pressure proportional to 1/*R*, with *R* radius of particles

Air-entry pressure measurement

Critical thickness results

- Model for predicting risk of cracking:
 - Cam-Clay model
 - Air-entry pressure as "the" most critical capillary pressure
 - Cracking criterion based on fracture mechanics

Outline

- C-S-H at submicrometer scale
- Plastic shrinkage cracking
- <u>Sulfate attacks</u>
- Resistance to freeze-thaw cycling

with: N. N. Bui (Navier), J.-M. Pereira (Navier), R. Barbarulo (LCR), & Gilles

Sulfate attacks

External or internal sulfate attacks can lead to expansion and damage of cementitious materials

[Ph.D. thesis Khelifa, Univ. Orléans, 2009]

Chemical reactions during sulfate attacks

[Gartner, 2009]

Julv	5,	2016	23	/36
Jury	<i>J</i> ,	2010	23	50

2 Na²⁺ + SO₄²⁻ + Ca²⁺ + 2 (OH⁻) + 2 H₂O

$$\boxed{\begin{array}{c} CaSO_4.2H_2O \\ Cypsum (C$H_2) \end{array}} + 2 Na(OH)$$

M. Vandamme

Typical laboratory study

[Gollop & Taylor, CCR, 1992]

M. Vandamme

Work with compacted powders

- Objectives:
 - Faster expansion
 - More homogeneous response of sample
 - Realistic physico-chemical phenomena

Injection of sulfates

Isochoric testing

- Isochoric testing: Measurement of an expansion stress
 - No axial and radial strains
 - Measurement of axial and radial stress
 - Measurements of sulfate concentration of input and output solution

Typical isochoric experiment

Cement paste flushed with a sodium sulfate solution at 66 mM

Thermodynamic modeling

• Thermodynamic models make it possibe to predict evolution of solid phase assembly over the injections

Cement paste flushed with a sodium sulfate solution at 66 mM

M. Vandamme

How crystallization induces a strain

• Expansion stress mostly independent of concentration, but scales linearly with amount of ettringite formed

Outline

- C-S-H at submicrometer scale
- Plastic shrinkage cracking
- Sulfate attacks
- <u>Resistance to freeze-thaw cycling</u>

with: N. Mayercsik (GaTech), K. Kurtis (GaTech), S. Brisard (Navier)

Damage induced by freezing

Damage caused by freezing in a stone

[Tourenq, Rapp. Rech. LCPC, 1967]

Concrete nanoscale to structures

July 5, 2016 31/36

Role of air voids

 Air voids serve as reservoirs of expansion, to avoid buildup of pore pressure during freezing

Poromechanical analysis of 1 air void

• From Coussy: $\frac{\partial}{\partial t} \left(S_C \left(\frac{1}{\overline{V_L^0}} - \frac{1}{\overline{V_C^0}} \right) \right) + \frac{\partial}{\partial t} \left| \left(\frac{S_C}{K_C} \left(\frac{\overline{V_L^0}}{\overline{V_C^0}} \right)^2 + \frac{S_L}{K_L} \right) \frac{p_L}{\overline{V_L^0}} \right| = \frac{p_L}{\overline{V_L^0}} \frac{\kappa}{\phi_0 \eta} \frac{1}{r^2} \frac{\partial}{\partial r} \left[k_{rL} (S_L) r^2 \frac{\partial p_L}{\partial r} \right]$

What happens upon immersion

• Some air bubbles remain trapped. Trapped air needs to diffuse out.

Evolution of response upon cycling

M. Vandamme

Concrete nanoscale to structures

July 5, 2016 36/36