Homogenization as a microstructure probe tool a journey to the interior of cement paste From concrete nanoscale to structure

celebrating Gilles CHANVILLARD's memory

Julien SANAHUJA (EDF lab) Luc DORMIEUX (ENPC)

5 july 2016

Introduction

Cementitious materials

- have time-dependent properties
- are multi-scale
- host multi-physics processes
- interact with their environment

Homogenization

- $\bullet\,$ can bridge scales: physical processes $\rightarrow\,$ engineering behaviour
- can estimate microstructure influence on macroscopic properties

But cement paste microstructure

- is difficult to comprehensively observe in its multiscale nature
- may be too complex to be accurately modelled in full details

And cement paste macroscopic properties

- are easy to measure
- are of direct interest for engineers

General strategy

• "focus on first order effects"

start with a simplified morphological model

• "equations have to be nice and efficient"

use mean-field homogenization

• "be demanding on model validation"

compare predictions to experimental measurements

- iterate this trial-and-error process
 - comparison $OK \Rightarrow$ get other experimental data to compare
 - comparison $\kappa_0 \Rightarrow$ go back to morphological model and improve it

Outline

Hydrates growing around cement grains

- Basic morphological model based on MRP
- Prediction of setting: issues
- Setting issues: mitigation

Introduction of inner/outer hydrates

- Outer products precipitating as spherical clusters
- Intermission: does shape matter?
- Introduction of C-S-H bricks and platelets

Further comparisons and extensions

- Late age: more experimental data
- Early age: more experimental data and model improvement
- Towards basic creep: an overview

Hydrates growing around cement grains Introduction of inner/outer hydrates Basic morphological model based on MRP Prediction of setting: issues Setting issues: mitigation

Outline

Hydrates growing around cement grains

- Basic morphological model based on MRP
- Prediction of setting: issues
- Setting issues: mitigation

2 Introduction of inner/outer hydrates

- Outer products precipitating as spherical clusters
- Intermission: does shape matter?
- Introduction of C-S-H bricks and platelets

3 Further comparisons and extensions

- Late age: more experimental data
- Early age: more experimental data and model improvement
- Towards basic creep: an overview

Basic morphological model based on MRP Prediction of setting: issues Setting issues: mitigation

Hydrates growing around cement grains

Simplified view of cement paste

3 phases: anhydrous, hydrates, capillary porosity

A common morphological model

Generalized self-consistent scheme

heterogeneous solid phase (morphologically representative pattern: layered sphere)

capillary porosity (sphere)

Hydrates growing around cement grains Introduction of inner/outer hydrates Basic morphological model based on MRP Prediction of setting: issues Setting issues: mitigation

Input data: phases volume fractions and elasticity

Elastic properties

	E (GPa)	ν	source
anh.	135	0.3	nano-indentation ¹
hyd.	31	0.24	nano-indentation ²

¹[Velez et al., CCR 31, 2001], ²[Velez et al., Kurdowski symp., 2001]

Hydrates growing around cement grains

Introduction of inner/outer hydrates Further comparisons and extensions Basic morphological model based on MRP Prediction of setting: issues Setting issues: mitigation

Effective stiffness from MRP-based model

Hydrates growing around cement grains

Introduction of inner/outer hydrates

Basic morphological model based on MR Prediction of setting: issues Setting issues: mitigation

Experimental estimation of setting degree of hydration

Experimental data: linear regression [Torrenti et al., Mas 38, 2005], strength data [Byfors, PhD, 1980] and [Taplin, AJAS 10, 1959]

Basic morphological model based on MRP Prediction of setting: issues Setting issues: mitigation

An attempt to interpret SCS implicit morphology

Interpenetrating spheres on primitive cubic lattice FEM computations $\Rightarrow k^{eff}$

Self-consistent scheme

 $\Rightarrow \mathbb{C}^{eff}$

$$\varphi = 0.6$$

$$\varphi = 0.3$$

Hydrates growing around cement grains Introduction of inner/outer hydrates Basic morphological model based on M Prediction of setting: issues Setting issues: mitigation

Self-consistent scheme VS spheres on cubic lattice

Basic morphological model based on MRP Prediction of setting: issues Setting issues: mitigation

Towards a multiscale description

Current morphological model \approx monodisperse distribution of spheres \Rightarrow instantaneous setting for w/c < 0.32

To mitigate this issue: multiscale description of cement grains starting with two separated scales

Hydrates growing around cement grains Introduction of inner/outer hydrates Basic morphological model based on MRP Prediction of setting: issues Setting issues: mitigation

Phases volume fractions

Hydration: Powers + hydration rate size-independent (simplification) small particles: 60~%

Hydrates growing around cement grains Introduction of inner/outer hydrates Basic morphological model based on MRP Prediction of setting: issues Setting issues: mitigation

Effective stiffness from 2-scales MRP-based model

Duter products precipitating as spherical clusters ntermission: does shape matter? ntroduction of C-S-H bricks and platelets

Outline

Hydrates growing around cement grains

- Basic morphological model based on MRP
- Prediction of setting: issues
- Setting issues: mitigation

2 Introduction of inner/outer hydrates

- Outer products precipitating as spherical clusters
- Intermission: does shape matter?
- Introduction of C-S-H bricks and platelets

Further comparisons and extensions

- Late age: more experimental data
- Early age: more experimental data and model improvement
- Towards basic creep: an overview

Outer products precipitating as spherical clusters Intermission: does shape matter? Introduction of C-S-H bricks and platelets

Setting controlled by outer hydrates

Completely avoid instantaneous setting

consider cement grains as inclusions in a matrix

Introduction of high/low density hydrates as inner/outer products

Outer products precipitating as spherical clusters Intermission: does shape matter? Introduction of C-S-H bricks and platelets

Hydration with HD and LD hydrates

Hydration: Powers model

+ repartition HD / LD hydrates [Tennis et al., CCR 30, 2000]

+ $\varphi_{hd}=0.3$ (from 0.28 [Powers] to 0.30, 0.35 [Tennis et al., CCR 30, 2000])

Outer products precipitating as spherical clusters Intermission: does shape matter? Introduction of C-S-H bricks and platelets

Effective stiffness from inner/outer model

Is the spherical shape relevant for hydrate solids?

AFM observation of a C₃S crystal covered by a lime-saturated droplet [Garrault-Gauffinet, PhD, 1998]

Small particules of C-S-H anisotropic shape

- parallel to the grain surface 60 nm by 30 nm
- thickness: 5 nm

 \Rightarrow elementary bricks of C-S-H aspect ratio $r_s=5/\sqrt{30*60}\approx 0.12$

Question of the morphology of C-S-H still widely opened we chose a representation based upon these elementary bricks

Outer products precipitating as spherical clusters Intermission: does shape matter? Introduction of C-S-H bricks and platelets

The gypsum "interlude"

Experimental data on gypsum [Meille, PhD, 2001], [Colak, ML 60, 2006], [Ali et al., JMS 10, 1975], [Phani, Acsb 65, 1986], [Tazawa, ACBM 7, 1998]

Outer products precipitating as spherical clusters Intermission: does shape matter? Introduction of C-S-H bricks and platelets

An attempt to take into account elongated particles

elongated particles, random orientation

Parallelepipeds (21*3*3 voxels) randomly put into a cube FEM computations

[Meille, PhD, 2001]

Outer products precipitating as spherical clusters Intermission: does shape matter? Introduction of C-S-H bricks and platelets

SCS with prolate-shaped solid VS FEM

Critical porosity $\varphi^c = 1 - f_s^c$ depends on prolate aspect-ratio r_s

FEM results [Meille, PhD, 2001]

Outer products precipitating as spherical clusters Intermission: does shape matter? Introduction of C-S-H bricks and platelets

Scs critical solid volume fraction VS geometry

Geometrical percolation of spheroids [Garboczi et al., PRE 52, 1995]

Outer products precipitating as spherical clusters Intermission: does shape matter? Introduction of C-S-H bricks and platelets

Oblate-shaped hydrate solids

Input data: elastic and morphological parameters

	E (GPa)	ν	φ	a.r.	source
anh.	135	0.3			nano-indentation ¹
hyd. нр	31	0.24	0.3	0.12	nano-indentation ² , porosity ³ , AFM ⁴
hyd. LD	evol.	evol.	evol.	0.033	self-consistent scheme, hydration model, setting
hyd. solids	71.6	0.27			reverse analysis hyd. HD

LD aspect-ratio: fit on setting results

Rem: atomic scale modelling [Pellenq et al., CCR 38, 2008] tobermorite C/S=0.83 Young's modulus: 54 (\perp sheets); 68, 72 (\parallel sheets) GPa

¹[Velez et al., CCR 31, 2001], ²[Velez et al., Kurdowski symp., 2001], ³[Tennis et al., CCR 30, 2000], ⁴[Garrault-Gauffinet, PhD, 1998]

Outer products precipitating as spherical clusters Intermission: does shape matter? Introduction of C-S-H bricks and platelets

Effective stiffness from inner/outer with bricks/platelets

5 july 2016 Microstructure: a journey to the interior of cement paste

ate age: more experimental data Early age: more experimental data and model improvement Towards basic creep: an overview

Outline

Hydrates growing around cement grains

- Basic morphological model based on MRP
- Prediction of setting: issues
- Setting issues: mitigation

Introduction of inner/outer hydrates

- Outer products precipitating as spherical clusters
- Intermission: does shape matter?
- Introduction of C-S-H bricks and platelets

3 Further comparisons and extensions

- Late age: more experimental data
- Early age: more experimental data and model improvement
- Towards basic creep: an overview

Late age: more experimental data Early age: more experimental data and model improvement Towards basic creep: an overview

Mature pastes: $\alpha = \alpha^{ult}$

5 july 2016 Microstructure: a journey to the interior of cement paste

Late age: more experimental data Early age: more experimental data and model improvement Towards basic creep: an overview

Hydration degree at setting

Late age: more experimental data Early age: more experimental data and model improvement Towards basic creep: an overview

Setting: more insights at early age

Continuous monitoring of stiffness, from fluid state?

- Ultra-sonic meas. [Boumiz et al., 2nd Rilem workshop on hydration and setting, 1997]
- EMM-ARM technique [Azenha et al., CCR 40, 2010]

Late age: more experimental data Early age: more experimental data and model improvement Towards basic creep: an overview

Scale separation in outer hydrates

5 july 2016

Late age: more experimental data Early age: more experimental data and model improvement Towards basic creep: an overview

Effective stiffness from 2-scales outer

Late age: more experimental data Early age: more experimental data and model improvement Towards basic creep: an overview

Converting elastic model to basic creep model

Only one extra parameter: Maxwell sliding characteristic time au

Late age: more experimental data Early age: more experimental data and model improvement Towards basic creep: an overview

Creep of cement paste VS experimental data

Thanks Gilles

A morphological model of cement paste

- simplified (hydrates not detailed)
- efficient (mean field homogenization)
- validated (at both early and late ages)
- not just about elasticity prediction (can be extended to creep)

Many sources of improvement and prospects

- morphology: differentiate mineral phases + upscale to concrete
- improve chemical modelling

(hydration, degradation mechanisms, ...)

- more experimental comparisons
- investigate other mechanical properties

(creep, strength, damage, ...)

investigate transport properties

Late age: more experimental data Early age: more experimental data and model improvement Towards basic creep: an overview

Paper co-authored with Gilles on cement paste

For more details

• J. SANAHUJA, L. DORMIEUX and G. CHANVILLARD. Modelling elasticity of a hydrating cement paste. *Cement and Concrete Research*, 37(10):1427–1439, 2007.